### Random Post

### Recent Posts

### Recent Comments

### Archives

### Categories

- article (11)
- enigma (1,123)
- misc (2)
- project euler (2)
- puzzle (31)
- site news (43)
- tantalizer (31)
- teaser (3)

### Site Stats

- 168,355 hits

Programming Enigma Puzzles

18 June 2013

Posted by on **From New Scientist #1244, 12th March 1981** [link]

Jessie makes parkin in a rectangular slab, but I store it in a round tin. She will make the rectangle in any proportions I specify. In the past I have specified 1 × 1 or 4 × 1. If it’s 4 × 1, I cut the slab in half and rearrange the two pieces as the sketch shows. In either case the proportion of the tin’s are filled is 2/𝜋: about 0.6366.

Parkin keeps best if the tin is as full as possible, and I have been wondering if I could improve on that proportion of 0.6366, by specifying a differently proportioned slab. Can you help me?

You can’t put one piece on top of another. And you are allowed only to make one straight cut in the slab before putting the pieces in the tin.

How many times the width of the slab should I ask Jessie to make its length?

[enigma100]

Advertisements

%d bloggers like this:

By considering fitting half the parkin in a semicircular tin, we see that a 4:1 block of parkin does indeed yield a usage of 2/𝜋 (≈ 0.6366), but immediately this can be improved on by adding an extra triangle of parkin on one end (so the original slab would be cut obliquely).

This increases the usage of the tin to (2 + (√2 – 1))/𝜋 (≈ 0.7025) and requires the length of the original slab of parkin to be 3 + √2 (≈ 4.414) times its width.

But this isn’t the maximum possible usage for this arrangement. By considering the arrangement with a variable sized rectangular block:

we determine that the usage of the minimally sized circular tin is:

the graph of which looks like this:

We can find the maximum of this expression numerically (using the

find_max()function from myenigma.pylibrary), which takes 40ms:or symbolically (using the SymPy library), which takes 684ms:

to get the following result (which is the published solution, although I haven’t shown there isn’t a different cutting strategy which might give a better packing, but I don’t think there is):

Solution:The original parkin slab should be 3.711 times its width. The exact value is calculated from the following formula:This uses 0.7144 of the tin. The exact value is given by the following formula:

If we rename your √(x² + 1) as r, and your x as √(r² – 1), the result is the same, of course, but it allows us to see a bit more easily how the dimensions of the slab compare with the radius r of the tin (which is less easy to vary in practice).

If we bake a slab of dimensions ½√3 ≈ 0.866 times r by 3r, a ratio of √12 ≈ 3.4642, and if it is permitted to make three straight cuts, then the resulting four pieces fit together in a hexagon, with a packing factor of 1.5√3/π ≈ 0.827.

I made a diagram almost as pretty as yours, but don’t see how to upload it.

Imagine a hexagon inscribed in a circle and divided along the x and y axes.

Does anyone have a recipe for parkin?