Enigmatic Code

Programming Enigma Puzzles

Tag Archives: by: Nick MacKinnon

Teaser 2779: New Year Party

From The Sunday Times, 27th December 2015 [link]

We have a game planned for our forthcoming New Year party. Each person there will write their name on a slip of paper and the slips will be shuffled and one given to each person. If anyone gets their own slip, then all the slips will be collected up and we shall start again. When everyone has been given a name different from their own, each person will use their right hand to hold the left hand of the person named on their slip. We hope that everyone will then be forming one circle ready to sing Auld Lang Syne — but there’s a slightly less than evens chance of this happening.

How many people will there be at the party?


Teaser 2773: King Lear III

From The Sunday Times, 15th November 2015 [link]

King Lear III had a square kingdom divided into sixteen equal-sized smaller square plots, numbered in the usual way. He decided to keep a realm for himself and share the rest into equal realms (larger than his) for his daughters, a “realm” being a collection of one or more connected plots. He chose a suitable realm for himself and one for his eldest daughter and he noticed that, in each case, multiplying together [the] plot numbers within the realm gave a perfect square. Then he found that there was only one way to divide the remainder of the kingdom into suitable realms.

What are the plot numbers of the eldest daughter’s realm and of the king’s realm.

The puzzle text on The Sunday Times website, uses “any” where I have placed “[the]”.


Teaser 2759: King Lear II

From The Sunday Times, 9th August 2015 [link]

King Lear II had a square kingdom divided into 16 equal smaller squares. He kept one square and divided the rest equally among his daughters, giving each one an identically-shaped connected piece. If you knew whether Lear kept a corner square, an edge square or a middle square, then you could work out how many daughters he had.

The squares were numbered 1 to 16 in the usual way. The numbers of Cordelia’s squares added up to a perfect square. If you now knew that total you could work out the number of Lear’s square.

What number square did Lear keep for himself and what were the numbers of Cordelia’s squares?


%d bloggers like this: